
Pympler Documentation
Release 0.9

Jean Brouwers, Ludwig Haehne, Robert Schuppenies

October 14, 2020

Contents

1 Requirements 3

2 Download 5

3 Target Audience 7

4 Usage Examples 9

5 History 11

6 Quick Links 13

7 Table of Content 15

Python Module Index 69

Index 71

i

ii

Pympler Documentation, Release 0.9

Pympler is a development tool to measure, monitor and analyze the memory behavior of Python objects in a running
Python application.

By pympling a Python application, detailed insight in the size and the lifetime of Python objects can be obtained.
Undesirable or unexpected runtime behavior like memory bloat and other “pymples” can easily be identified.

Pympler integrates three previously separate modules into a single, comprehensive profiling tool. The asizeof module
provides basic size information for one or several Python objects, module muppy is used for on-line monitoring of a
Python application and module Class Tracker provides off-line analysis of the lifetime of selected Python objects.

A web profiling frontend exposes process statistics, garbage visualisation and class tracker statistics.

Contents 1

Pympler Documentation, Release 0.9

2 Contents

CHAPTER 1

Requirements

Pympler is written entirely in Python, with no dependencies to external libraries. It integrates Bottle and Flot. Pympler
has been tested with Python 2.7, 3.5, 3.6, 3.7, 3.8 and 3.9.

Pympler is platform independent and has been tested on various Linux distributions (32bit and 64bit), Windows 7 and
MacOS X.

3

http://bottlepy.org
http://www.flotcharts.org

Pympler Documentation, Release 0.9

4 Chapter 1. Requirements

CHAPTER 2

Download

If you have pip installed, the easiest way to get Pympler is:

pip install pympler

Alternately, download Pympler releases from the Python Package Index or check out the latest development revision
with git. Please see the README file for installation instructions.

5

https://pypi.org/projects/Pympler
https://github.com/pympler/pympler

Pympler Documentation, Release 0.9

6 Chapter 2. Download

CHAPTER 3

Target Audience

Every Python developer interested in analyzing the memory consumption of their Python program should find a suit-
able, readily usable facility in Pympler.

7

Pympler Documentation, Release 0.9

8 Chapter 3. Target Audience

CHAPTER 4

Usage Examples

pympler.asizeof can be used to investigate how much memory certain Python objects consume. In contrast to
sys.getsizeof, asizeof sizes objects recursively. You can use one of the asizeof functions to get the size of
these objects and all associated referents:

>>> from pympler import asizeof
>>> obj = [1, 2, (3, 4), 'text']
>>> asizeof.asizeof(obj)
176
>>> print(asizeof.asized(obj, detail=1).format())
[1, 2, (3, 4), 'text'] size=176 flat=48

(3, 4) size=64 flat=32
'text' size=32 flat=32
1 size=16 flat=16
2 size=16 flat=16

Memory leaks can be detected by using muppy. While the garbage collector debug output can report circular references
this does not easily reveal where the leaks come from. Muppy can identify if objects are leaked out of a scope between
two reference points:

>>> from pympler import tracker
>>> tr = tracker.SummaryTracker()
>>> function_without_side_effects()
>>> tr.print_diff()
types | # objects | total size

======= | =========== | ============
dict | 1 | 280 B
list | 1 | 192 B

Tracking the lifetime of objects of certain classes can be achieved with the Class Tracker. This gives insight into
instantiation patterns and helps to understand how specific objects contribute to the memory footprint over time:

>>> from pympler import classtracker
>>> tr = classtracker.ClassTracker()
>>> tr.track_class(Document)

(continues on next page)

9

Pympler Documentation, Release 0.9

(continued from previous page)

>>> tr.create_snapshot()
>>> create_documents()
>>> tr.create_snapshot()
>>> tr.stats.print_summary()

active 1.42 MB average pct
Document 1000 195.38 KB 200 B 13%

10 Chapter 4. Usage Examples

CHAPTER 5

History

Pympler was founded in August 2008 by Jean Brouwers, Ludwig Haehne, and Robert Schuppenies with the goal of
providing a complete and stand-alone memory profiling solution for Python.

11

Pympler Documentation, Release 0.9

12 Chapter 5. History

CHAPTER 6

Quick Links

Download pympler: https://pypi.org/projects/Pympler

File a bug report: https://github.com/pympler/pympler/issues

Check out repository: https://github.com/pympler/pympler

13

https://pypi.org/projects/Pympler
https://github.com/pympler/pympler/issues
https://github.com/pympler/pympler

Pympler Documentation, Release 0.9

14 Chapter 6. Quick Links

CHAPTER 7

Table of Content

• Sizing individual objects - A description of the asizeof module.

• Tracking class instances - A description of the ClassTracker facility.

• Identifying memory leaks - A description of the muppy modules.

• Tracking memory in Django - How to use the Django debug toolbar memory panel.

• Library - The library reference guide.

• Pympler Tutorials - Pympler tutorials and usage examples.

• Related Work - Other projects which deal which memory profiling in Python are mentioned in the this section.

• Glossary - A few basic terms used throughout the documentation.

• Changes in Pympler

• Copyright - Last but not least ..

Also available are

• genindex

• modindex

• search

7.1 Sitemap

Below you can find a complete overview of all pages of this documentation.

Pympler is a development tool to measure, monitor and analyze the memory behavior of Python objects in a running
Python application.

By pympling a Python application, detailed insight in the size and the lifetime of Python objects can be obtained.
Undesirable or unexpected runtime behavior like memory bloat and other “pymples” can easily be identified.

15

Pympler Documentation, Release 0.9

Pympler integrates three previously separate modules into a single, comprehensive profiling tool. The asizeof module
provides basic size information for one or several Python objects, module muppy is used for on-line monitoring of a
Python application and module Class Tracker provides off-line analysis of the lifetime of selected Python objects.

A web profiling frontend exposes process statistics, garbage visualisation and class tracker statistics.

7.1.1 Requirements

Pympler is written entirely in Python, with no dependencies to external libraries. It integrates Bottle and Flot. Pympler
has been tested with Python 2.7, 3.5, 3.6, 3.7, 3.8 and 3.9.

Pympler is platform independent and has been tested on various Linux distributions (32bit and 64bit), Windows 7 and
MacOS X.

7.1.2 Download

If you have pip installed, the easiest way to get Pympler is:

pip install pympler

Alternately, download Pympler releases from the Python Package Index or check out the latest development revision
with git. Please see the README file for installation instructions.

7.1.3 Target Audience

Every Python developer interested in analyzing the memory consumption of their Python program should find a suit-
able, readily usable facility in Pympler.

7.1.4 Usage Examples

pympler.asizeof can be used to investigate how much memory certain Python objects consume. In contrast to
sys.getsizeof, asizeof sizes objects recursively. You can use one of the asizeof functions to get the size of
these objects and all associated referents:

>>> from pympler import asizeof
>>> obj = [1, 2, (3, 4), 'text']
>>> asizeof.asizeof(obj)
176
>>> print(asizeof.asized(obj, detail=1).format())
[1, 2, (3, 4), 'text'] size=176 flat=48

(3, 4) size=64 flat=32
'text' size=32 flat=32
1 size=16 flat=16
2 size=16 flat=16

Memory leaks can be detected by using muppy. While the garbage collector debug output can report circular references
this does not easily reveal where the leaks come from. Muppy can identify if objects are leaked out of a scope between
two reference points:

>>> from pympler import tracker
>>> tr = tracker.SummaryTracker()
>>> function_without_side_effects()

(continues on next page)

16 Chapter 7. Table of Content

http://bottlepy.org
http://www.flotcharts.org
https://pypi.org/projects/Pympler
https://github.com/pympler/pympler

Pympler Documentation, Release 0.9

(continued from previous page)

>>> tr.print_diff()
types | # objects | total size

======= | =========== | ============
dict | 1 | 280 B
list | 1 | 192 B

Tracking the lifetime of objects of certain classes can be achieved with the Class Tracker. This gives insight into
instantiation patterns and helps to understand how specific objects contribute to the memory footprint over time:

>>> from pympler import classtracker
>>> tr = classtracker.ClassTracker()
>>> tr.track_class(Document)
>>> tr.create_snapshot()
>>> create_documents()
>>> tr.create_snapshot()
>>> tr.stats.print_summary()

active 1.42 MB average pct
Document 1000 195.38 KB 200 B 13%

7.1.5 History

Pympler was founded in August 2008 by Jean Brouwers, Ludwig Haehne, and Robert Schuppenies with the goal of
providing a complete and stand-alone memory profiling solution for Python.

7.1.6 Sizing individual objects

Introduction

This module exposes 9 functions and 2 classes to obtain lengths and sizes of Python objects (for Python 2.6 or later).

Earlier versions of this module supported Python versions down to Python 2.2. If you are using Python 2.5 or older,
please consider downgrading Pympler to version 0.3.x.

Public Functions1

Function asizeof calculates the combined (approximate) size in bytes of one or several Python objects.

Function asizesof returns a tuple containing the (approximate) size in bytes for each given Python object
separately.

Function asized returns for each object an instance of class Asized containing all the size information of
the object and a tuple with the referents2.

Functions basicsize and itemsize return the basic- respectively itemsize of the given object, both in bytes.
For objects as array.array, numpy.array, numpy.matrix, etc. where the item size varies de-
pending on the instance-specific data type, function itemsize returns that item size.

Function flatsize returns the flat size of a Python object in bytes defined as the basic size plus the item size
times the length of the given object.

1 The functions and classes in this module are not thread-safe.
2 The referents of an object are the objects referenced by that object. For example, the referents of a list are the objects held in the list, the

referents of a dict are the key and value objects in the dict, etc.

7.1. Sitemap 17

Pympler Documentation, Release 0.9

Function leng returns the length of an object, like standard function len but extended for several types.
E.g. the leng of a multi-precision int (or long) is the number of digits4. The length of most mutable
sequence objects includes an estimate of the over-allocation and therefore, the leng value may differ
from the standard len result. For objects like array.array, numpy.array, numpy.matrix, etc.
function leng returns the proper number of items.

Function refs returns (a generator for) the referents2 of the given object.

Certain classes are known to be sub-classes of or to behave as dict objects. Function adict can be used
to register other class objects to be treated like dict.

Public Classes1

Class Asizer may be used to accumulate the results of several asizeof or asizesof calls. After creating an
Asizer instance, use methods asizeof and asizesof as needed to size any number of additional objects.

Call methods exclude_refs and/or exclude_types to exclude references to respectively instances or types
of certain objects.

Use one of the print_. . . methods to report the statistics.

An instance of class Asized is returned for each object sized by the asized function or method.

Duplicate Objects

Any duplicate, given objects are sized only once and the size is included in the accumulated total only
once. But functions asizesof and asized will return a size value respectively an Asized instance for each
given object, including duplicates.

Definitions3

The length of an objects like dict, list, set, str, tuple, etc. is defined as the number of items
held in or allocated by the object. Held items are references to other objects, called the referents.

The size of an object is defined as the sum of the flat size of the object plus the sizes of any referents2.
Referents are visited recursively up to the specified detail level. However, the size of objects referenced
multiple times is included only once in the total size.

The flat size of an object is defined as the basic size of the object plus the item size times the number
of allocated items, references to referents. The flat size does include the size for the references to the
referents, but not the size of the referents themselves.

The flat size returned by function flatsize equals the result of function asizeof with options code=True,
ignored=False, limit=0 and option align set to the same value.

The accurate flat size for an object is obtained from function sys.getsizeof() where available.
Otherwise, the length and size of sequence objects as dicts, lists, sets, etc. is based on an estimate
for the number of allocated items. As a result, the reported length and size may differ substantially from
the actual length and size.

The basic and item size are obtained from the __basicsize__ respectively __itemsize__ attributes
of the (type of the) object. Where necessary (e.g. sequence objects), a zero __itemsize__ is replaced
by the size of a corresponding C type.

The overhead for Python’s garbage collector (GC) is included in the basic size of (GC managed) objects
as well as the space needed for refcounts (used only in certain Python builds).

Optionally, size values can be aligned to any power-of-2 multiple.

4 See Python source file .../Include/longinterp.h for the C typedef of digit used in multi-precision int (or long) objects. The C
sizeof(digit) in bytes can be obtained in Python from the int (or long) __itemsize__ attribute. Function leng determines the number of
digits of an int (or long) object.

3 These definitions and other assumptions are rather arbitrary and may need corrections or adjustments.

18 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Size of (byte)code

The (byte)code size of objects like classes, functions, methods, modules, etc. can be included by setting
option code=True.

Iterators are handled like sequences: iterated object(s) are sized like referents2, but only up to the specified
level or recursion limit (and only if function gc.get_referents() returns the referent object of
iterators).

Generators are sized as (byte)code only, but the generated objects are never sized.

Old- and New-style Classes

All old- and new-style class, instance and type objects are handled uniformly such that (a) instance
objects are distinguished from class objects and (b) instances of different old-style classes can be dealt
with separately.

Class and type objects are represented as <class* def> respectively <type ... def>
where the * indicates an old-style class and the ... def suffix marks the definition object. Instances of
classes are shown as <class module.name*> without the ... def suffix. The * after the name
indicates an instance of an old-style class.

Ignored Objects

To avoid excessive sizes, several object types are ignored3 by default, e.g. built-in functions, built-in types
and classes5, function globals and module referents. However, any instances thereof and module objects
will be sized when passed as given objects. Ignored object types are included unless option ignored is set
accordingly.

In addition, many __...__ attributes of callable objects are ignored3, except crucial ones, e.g. class
attributes __dict__, __doc__, __name__ and __slots__. For more details, see the type-specific
_..._refs() and _len_...() functions below.

Asizer

class pympler.asizeof.Asized(size, flat, refs=(), name=None)
Stores the results of an asized object in the following 4 attributes:

size – total size of the object (including referents)

flat – flat size of the object (in bytes)

name – name or repr of the object

refs – tuple containing an Asized instance for each referent

class pympler.asizeof.Asizer(**opts)
Sizer state and options to accumulate sizes.

asized(*objs, **opts)
Size each object and return an Asized instance with size information and referents up to the given detail
level (and with modified options, see method set).

If only one object is given, the return value is the Asized instance for that object. The Asized size of
duplicate and ignored objects will be zero.

asizeof(*objs, **opts)
Return the combined size of the given objects (with modified options, see method set).

5 Type``s and ``class``es are considered built-in if the ``__module__ of the type or class is listed in the private
_builtin_modules.

7.1. Sitemap 19

Pympler Documentation, Release 0.9

asizesof(*objs, **opts)
Return the individual sizes of the given objects (with modified options, see method set).

The size of duplicate and ignored objects will be zero.

exclude_refs(*objs)
Exclude any references to the specified objects from sizing.

While any references to the given objects are excluded, the objects will be sized if specified as positional
arguments in subsequent calls to methods asizeof and asizesof.

exclude_types(*objs)
Exclude the specified object instances and types from sizing.

All instances and types of the given objects are excluded, even objects specified as positional arguments in
subsequent calls to methods asizeof and asizesof.

print_profiles(w=0, cutoff=0, **print3options)
Print the profiles above cutoff percentage.

The available options and defaults are:

w=0 – indentation for each line

cutoff=0 – minimum percentage printed

print3options – some keyword arguments, like Python 3+ print

print_stats(objs=(), opts={}, sized=(), sizes=(), stats=3, **print3options)
Prints the statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

opts={} – optional, dict of options used

sized=() – optional, tuple of Asized instances returned

sizes=() – optional, tuple of sizes returned

stats=3 – print stats, see function asizeof

print3options – some keyword arguments, like Python 3+ print

print_summary(w=0, objs=(), **print3options)
Print the summary statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

print3options – some keyword arguments, like Python 3+ print

print_typedefs(w=0, **print3options)
Print the types and dict tables.

The available options and defaults are:

w=0 – indentation for each line

print3options – some keyword arguments, like Python 3+ print

20 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

reset(above=1024, align=8, clip=80, code=False, cutoff=10, derive=False, detail=0, frames=False,
ignored=True, infer=False, limit=100, stats=0, stream=None, **extra)

Reset sizing options, state, etc. to defaults.

The available options and default values are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics, see function asizeof

stream=None – output stream for printing

See function asizeof for a description of the options.

set(above=None, align=None, code=None, cutoff=None, frames=None, detail=None, limit=None,
stats=None)
Set some sizing options. See also reset.

The available options are:

above – threshold for largest objects stats

align – size alignment

code – incl. (byte)code size

cutoff – limit large objects or profiles stats

detail – Asized refs level

frames – size or ignore frame objects

limit – recursion limit

stats – print statistics, see function asizeof

Any options not set remain unchanged from the previous setting.

Public Functions

pympler.asizeof.adict(*classes)
Install one or more classes to be handled as dict.

pympler.asizeof.asized(*objs, **opts)
Return a tuple containing an Asized instance for each object passed as positional argument.

The available options and defaults are:

7.1. Sitemap 21

Pympler Documentation, Release 0.9

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

If only one object is given, the return value is the Asized instance for that object. Otherwise, the length of the
returned tuple matches the number of given objects.

The Asized size of duplicate and ignored objects will be zero.

Set detail to the desired referents level and limit to the maximum recursion depth.

See function asizeof for descriptions of the other options.

pympler.asizeof.asizeof(*objs, **opts)
Return the combined size (in bytes) of all objects passed as positional arguments.

The available options and defaults are:

above=0 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

Set align to a power of 2 to align sizes. Any value less than 2 avoids size alignment.

If all is True and if no positional arguments are supplied. size all current gc objects, including module, global
and stack frame objects.

A positive clip value truncates all repr() strings to at most clip characters.

The (byte)code size of callable objects like functions, methods, classes, etc. is included only if code is True.

If derive is True, new types are handled like an existing (super) type provided there is one and only of those.

By default certain base types like object, super, etc. are ignored. Set ignored to False to include those.

22 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

If infer is True, new types are inferred from attributes (only implemented for dict types on callable attributes as
get, has_key, items, keys and values).

Set limit to a positive value to accumulate the sizes of the referents of each object, recursively up to the limit.
Using limit=0 returns the sum of the flat sizes of the given objects. High limit values may cause runtime errors
and miss objects for sizing.

A positive value for stats prints up to 9 statistics, (1) a summary of the number of objects sized and seen and a
list of the largests objects with size over above bytes, (2) a simple profile of the sized objects by type and (3+)
up to 6 tables showing the static, dynamic, derived, ignored, inferred and dict types used, found respectively
installed. The fractional part of the stats value (x 100) is the number of largest objects shown for (stats*1.+) or
the cutoff percentage for simple profiles for (*stats*=2.+). For example, *stats=1.10 shows the summary and
the 10 largest objects, also the default.

See this module documentation for the definition of flat size.

pympler.asizeof.asizesof(*objs, **opts)
Return a tuple containing the size (in bytes) of all objects passed as positional arguments.

The available options and defaults are:

above=1024 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

See function asizeof for a description of the options.

The length of the returned tuple equals the number of given objects.

The size of duplicate and ignored objects will be zero.

pympler.asizeof.basicsize(obj, **opts)
Return the basic size of an object (in bytes).

The available options and defaults are:

derive=False – derive type from super type

infer=False – try to infer types

save=False – save the object’s type definition if new

See this module documentation for the definition of basic size.

pympler.asizeof.flatsize(obj, align=0, **opts)
Return the flat size of an object (in bytes), optionally aligned to the given power of 2.

See function basicsize for a description of other available options.

See this module documentation for the definition of flat size.

7.1. Sitemap 23

Pympler Documentation, Release 0.9

pympler.asizeof.itemsize(obj, **opts)
Return the item size of an object (in bytes).

See function basicsize for a description of the available options.

See this module documentation for the definition of item size.

pympler.asizeof.leng(obj, **opts)
Return the length of an object (in items).

See function basicsize for a description of the available options.

pympler.asizeof.refs(obj, **opts)
Return (a generator for) specific referents of an object.

See function basicsize for a description of the available options.

7.1.7 Tracking class instances

Introduction

The ClassTracker is a facility delivering insight into the memory distribution of a Python program. It can introspect
memory consumption of certain classes and objects. Facilities are provided to track and size individual objects or
all instances of certain classes. Tracked objects are sized recursively to provide an overview of memory distribution
between the different tracked objects.

Usage

Let’s start with a simple example. Suppose you have this module:

>>> class Employee:
... pass
...
>>> class Factory:
... pass
...
>>> def create_factory():
... factory = Factory()
... factory.name = "Assembly Line Unlimited"
... factory.employees = []
... return factory
...
>>> def populate_factory(factory):
... for x in xrange(1000):
... worker = Employee()
... worker.assigned = factory.name
... factory.employees.append(worker)
...
>>> factory = create_factory()
>>> populate_factory(factory)

The basic tools of the ClassTracker are tracking objects or classes, taking snapshots, and printing or dumping statistics.
The first step is to decide what to track. Then spots of interest for snapshot creation have to be identified. Finally, the
gathered data can be printed or saved:

24 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

>>> factory = create_factory()
>>> from pympler.classtracker import ClassTracker
>>> tracker = ClassTracker()
>>> tracker.track_object(factory)
>>> tracker.track_class(Employee)
>>> tracker.create_snapshot()
>>> populate_factory(factory)
>>> tracker.create_snapshot()
>>> tracker.stats.print_summary()
---- SUMMARY --

active 1.22 MB average pct
Factory 1 344 B 344 B 0%
__main__.Employee 0 0 B 0 B 0%

active 1.42 MB average pct
Factory 1 4.75 KB 4.75 KB 0%
__main__.Employee 1000 195.38 KB 200 B 13%

Basic Functionality

Instance Tracking

The purpose of instance tracking is to observe the size and lifetime of an object of interest. Creation and destruction
timestamps are recorded and the size of the object is sampled when taking a snapshot.

To track the size of an individual object:

from pympler.classtracker import ClassTracker
tracker = ClassTracker()
obj = MyClass()
tracker.track_object(obj)

Class Tracking

Most of the time it’s cumbersome to track individual instances manually. Instead, all instances of a class can automat-
ically be tracked with track_class:

tracker.track_class(MyClass)

All instances of MyClass (or a class that inherits from MyClass) created hereafter are tracked.

Tracked Object Snapshot

Tracking alone will not reveal the size of an object. The idea of the ClassTracker is to sample the sizes of all tracked
objects at configurable instants in time. The create_snapshot function computes the size of all tracked objects:

tracker.create_snapshot('Before juggling with tracked objects')
...
tracker.create_snapshot('Juggling aftermath')

With this information, the distribution of the allocated memory can be apportioned to tracked classes and instances.

7.1. Sitemap 25

Pympler Documentation, Release 0.9

Print Statistics

The gathered data can be investigated with print_stats. This prints all available data. To filter and limit the output the
more powerful “Off-line analysis” API can be used instead.

Advanced Functionality

Per-referent Sizing

It may not be enough to know the total memory consumption of an object. Detailed per-referent statistics can be
gathered recursively up to a given resolution level. Resolution level 1 means that all direct referents of an object will
be sized. Level 2 also include the referents of the direct referents, and so forth. Note that the member variables of an
instance are typically stored in a dictionary and are therefore second order referents.

tracker.track_object(obj, resolution_level=2)

The resolution level can be changed if the object is already tracked:

tracker.track_change(obj, resolution_level=2)

The new setting will become effective for the next snapshot. This can help to raise the level of detail for a specific
instance of a tracked class without logging all the class’ instances with a high verbosity level. Nevertheless, the
resolution level can also be set for all instances of a class:

tracker.track_class(MyClass, resolution_level=1)

Warning: Please note the per-referent sizing is very memory and computationally intensive. The recorded meta-
data must be stored for each referent of a tracked object which might easily quadruplicate the memory footprint of
the build. Handle with care and don’t use too high resolution levels, especially if set via track_class.

Instantiation traces

Sometimes it is not trivial to observe where an object was instantiated. The ClassTracker can record the instantiation
stack trace for later evaluation.

tracker.track_class(MyClass, trace=1)

This only works with tracked classes, and not with individual objects.

Background Monitoring

The ClassTracker can be configured to take periodic snapshots automatically. The following example will take
10 snapshots a second (approximately) until the program has exited or the periodic snapshots are stopped with
stop_periodic_snapshots. Background monitoring also works if no object is tracked. In this mode, the ClassTracker
will only record the total virtual memory associated with the program. This can be useful in combination with back-
ground monitoring to detect memory usage which is transient or not associated with any tracked object.

tracker.start_periodic_snapshots(interval=0.1)

26 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Warning: Take care if you use automatic snapshots with tracked objects. The sizing of individual objects might
be inconsistent when memory is allocated or freed while the snapshot is being taken.

Off-line Analysis

The more data is gathered by the ClassTracker the more noise is produced on the console. The acquired ClassTracker
log data can also be saved to a file for off-line analysis:

tracker.stats.dump_stats('profile.dat')

The Stats class of the ClassTracker provides means to evaluate the collected data. The API is inspired by the Stats
class of the Python profiler. It is possible to sort the data based on user preferences, filter by class and limit the output
noise to a manageable magnitude.

The following example reads the dumped data and prints the ten largest Node objects to the standard output:

from pympler.classtracker_stats import ConsoleStats

stats = ConsoleStats()
stats.load_stats('profile.dat')
stats.sort_stats('size').print_stats(limit=10, clsname='Node')

HTML Statistics

The ClassTracker data can also be emitted in HTML format together with a number of charts (needs python-
matplotlib). HTML statistics can be emitted using the HtmlStats class:

from pympler.classtracker_stats import HtmlStats
HtmlStats(tracker=tracker).create_html('profile.html')

However, you can also reprocess a previously generated dump:

from pympler.classtracker_stats import HtmlStats

stats = HtmlStats(filename='profile.dat')
stats.create_html('profile.html')

Limitations and Corner Cases

Inheritance

Class tracking allows to observe multiple classes that might have an inheritance relationship. An object is only tracked
once. The tracking parameters of the most specialized tracked class control the actual tracking of an instance.

Shared Data

Data shared between multiple tracked objects won’t lead to overestimations. Shared data will be assigned to the first
(evaluated) tracked object it is referenced from, but is only counted once. Tracked objects are evaluated in the order
they were announced to the ClassTracker. This should make the assignment deterministic from one run to the next,
but has two known problems. If the ClassTracker is used concurrently from multiple threads, the announcement order

7.1. Sitemap 27

http://docs.python.org/lib/profile-stats.html
http://docs.python.org/lib/profile-stats.html

Pympler Documentation, Release 0.9

will likely change and may lead to random assignment of shared data to different objects. Shared data might also be
assigned to different objects during its lifetime, see the following example:

class A():
pass

from pympler.classtracker import ClassTracker
tracker = ClassTracker()

a = A()
tracker.track_object(a)
b = A()
tracker.track_object(b)
b.content = range(100000)
tracker.create_snapshot('#1')
a.notmine = b.content
tracker.create_snapshot('#2')

In the snapshot #1, b’s size will include the size of the large list. Then the list is shared with a. The snapshot #2 will
assign the list’s footprint to a because it was registered before b.

If a tracked object A is referenced from another tracked object B, A’s size is not added to B’s size, regardless of the
order in which they are sized.

Accuracy

ClassTracker uses the sizer module to gather size informations. Asizeof makes assumptions about the memory foot-
print of the various data types. As it is implemented in pure Python, there is no way to know how the actual Python
implementation allocates data and lays it out in memory. Thus, the size numbers are not really accurate and there
will always be a divergence between the virtual size of the Python process as reported by the OS and the sizes asizeof
estimates.

Most recent C/Python versions contain a facility to report accurate size informations of Python objects. If available,
asizeof uses it to improve the accuracy.

Morphing objects

Some programs instate the (anti-)pattern of changing an instance’ class at runtime, for example to morph abstract
objects into specific derivations during runtime. The pattern looks like the following in the code:

obj.__class__ = OtherClass

If the instance which is morphed is already tracked, the instance will continue to be tracked by the ClassTracker. If
the target class is tracked but the instance is not, the instance will only be tracked if the constructor of the target class
is called as part of the morphing process. The object will not be re-registered to the new class in the tracked object
index. However, the new class is stored in the representation of the object as soon as the object is sized.

7.1.8 Identifying memory leaks

Muppy tries to help developers to identity memory leaks of Python applications. It enables the tracking of memory
usage during runtime and the identification of objects which are leaking. Additionally, tools are provided which allow
to locate the source of not released objects.

28 Chapter 7. Table of Content

http://bugs.python.org/issue2898

Pympler Documentation, Release 0.9

Muppy is (yet another) Memory Usage Profiler for Python. The focus of this toolset is laid on the identification of
memory leaks. Let’s have a look what you can do with muppy.

The muppy module

Muppy allows you to get hold of all objects,

>>> from pympler import muppy
>>> all_objects = muppy.get_objects()
>>> len(all_objects) # doctest: +SKIP
19700

or filter out certain types of objects.

>>> import types
>>> my_types = muppy.filter(all_objects, Type=types.ClassType)
>>> len(my_types) # doctest: +SKIP
72
>>> for t in my_types:
... print t
... # doctest: +SKIP
UserDict.IterableUserDict
UserDict.UserDict
UserDict.DictMixin
os._Environ
sre_parse.Tokenizer
sre_parse.SubPattern
re.Scanner
string._multimap
distutils.log.Log
encodings.utf_8.StreamWriter
encodings.utf_8.StreamReader
codecs.StreamWriter
codecs.StreamReader
codecs.StreamReaderWriter
codecs.Codec
codecs.StreamRecoder
tokenize.Untokenizer
inspect.BlockFinder
sre_parse.Pattern
. . .

This result, for example, tells us that the number of lists remained the same, but the memory allocated by lists has
increased by 8 bytes. The correct increase for a LP64 system (see 64-Bit_Programming_Models).

The summary module

You can create summaries

>>> from pympler import summary
>>> sum1 = summary.summarize(all_objects)
>>> summary.print_(sum1) # doctest: +SKIP

types | # objects | total size
============================ | =========== | ============

dict | 546 | 953.30 KB

(continues on next page)

7.1. Sitemap 29

http://www.unix.org/version2/whatsnew/lp64_wp.html

Pympler Documentation, Release 0.9

(continued from previous page)

str | 8270 | 616.46 KB
list | 127 | 529.44 KB

tuple | 5021 | 410.62 KB
code | 1378 | 161.48 KB
type | 70 | 61.80 KB

wrapper_descriptor | 508 | 39.69 KB
builtin_function_or_method | 515 | 36.21 KB

int | 900 | 21.09 KB
method_descriptor | 269 | 18.91 KB

weakref | 177 | 15.21 KB
<class 'abc.ABCMeta | 16 | 14.12 KB

set | 48 | 10.88 KB
function (__init__) | 81 | 9.49 KB

member_descriptor | 131 | 9.21 KB

and compare them with other summaries.

>>> sum2 = summary.summarize(muppy.get_objects())
>>> diff = summary.get_diff(sum1, sum2)
>>> summary.print_(diff) # doctest: +SKIP

types | # objects | total size
=============================== | =========== | ============

list | 1097 | 1.07 MB
str | 1105 | 68.21 KB

dict | 14 | 21.08 KB
wrapper_descriptor | 215 | 16.80 KB

int | 121 | 2.84 KB
tuple | 30 | 2.02 KB

member_descriptor | 25 | 1.76 KB
weakref | 14 | 1.20 KB

getset_descriptor | 15 | 1.05 KB
method_descriptor | 12 | 864 B

frame (codename: get_objects) | 1 | 488 B
builtin_function_or_method | 6 | 432 B
frame (codename: <module>) | 1 | 424 B

classmethod_descriptor | 3 | 216 B
code | 1 | 120 B

The tracker module

Of course we don’t have to do all these steps manually, instead we can use muppy’s tracker.

>>> from pympler import tracker
>>> tr = tracker.SummaryTracker()
>>> tr.print_diff() # doctest: +SKIP

types | # objects | total size
====================================== | =========== | ============

list | 1095 | 160.78 KB
str | 1093 | 66.33 KB
int | 120 | 2.81 KB

dict | 3 | 840 B
frame (codename: create_summary) | 1 | 560 B

frame (codename: print_diff) | 1 | 480 B
frame (codename: diff) | 1 | 464 B
function (store_info) | 1 | 120 B

(continues on next page)

30 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

(continued from previous page)

cell | 2 | 112 B

A tracker object creates a summary (that is a summary which it will remember) on initialization. Now whenever you
call tracker.print_diff(), a new summary of the current state is created, compared to the previous summary and printed
to the console. As you can see here, quite a few objects got in between these two invocations. But if you don’t do
anything, nothing will change.

>>> tr.print_diff() # doctest: +SKIP
types | # objects | total size

======= | =========== | ============

Now check out this code snippet

>>> i = 1
>>> l = [1,2,3,4]
>>> d = {}
>>> tr.print_diff() # doctest: +SKIP

types | # objects | total size
======= | =========== | ============

dict | 1 | 280 B
list | 1 | 192 B

As you can see both, the new list and the new dict appear in the summary, but not the 4 integers used. Why is that?
Because they existed already before they were used here, that is some other part in the Python interpreter code makes
already use of them. Thus, they are not new.

The refbrowser module

In case some objects are leaking and you don’t know where they are still referenced, you can use the referrers browser.
At first let’s create a root object which we then reference from a tuple and a list.

>>> from pympler import refbrowser
>>> root = "some root object"
>>> root_ref1 = [root]
>>> root_ref2 = (root,)

>>> def output_function(o):
... return str(type(o))
...
>>> cb = refbrowser.ConsoleBrowser(root, maxdepth=2, str_func=output_function)

Then we create a ConsoleBrowser, which will give us a referrers tree starting at root, printing to a maximum depth of
2, and uses str_func to represent objects. Now it’s time to see where we are at.

>>> cb.print_tree() # doctest: +SKIP
<type 'str'>-+-<type 'dict'>-+-<type 'list'>

| +-<type 'list'>
| +-<type 'list'>
|
+-<type 'dict'>-+-<type 'module'>
| +-<type 'list'>
| +-<type 'frame'>
| +-<type 'function'>
| +-<type 'list'>

(continues on next page)

7.1. Sitemap 31

Pympler Documentation, Release 0.9

(continued from previous page)

| +-<type 'frame'>
| +-<type 'list'>
| +-<type 'function'>
| +-<type 'frame'>
|
+-<type 'list'>--<type 'dict'>
+-<type 'tuple'>--<type 'dict'>
+-<type 'dict'>--<class 'muppy.refbrowser.ConsoleBrowser'>

What we see is that the root object is referenced by the tuple and the list, as well as by three dictionaries. These
dictionaries belong to the environment, e.g. the ConsoleBrowser we just started and the current execution context.

This console browsing is of course kind of inconvenient. Much better would be an InteractiveBrowser. Let’s see what
we got.

>>> from pympler import refbrowser
>>> ib = refbrowser.InteractiveBrowser(root)
>>> ib.main()

Now you can click through all referrers of the root object.

7.1.9 Tracking memory in Django

32 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Introduction

Pympler includes a memory profile panel for Django that integrates with the Django Debug Toolbar. It shows process
memory information and model instances for the current request.

Usage

Pympler adds a memory panel as a third party addon – it’s not included in the Django Debug Toolbar. It can be added
by overriding the DEBUG_TOOLBAR_PANELS setting in the Django project settings:

DEBUG_TOOLBAR_PANELS = (
'debug_toolbar.panels.timer.TimerDebugPanel',
'pympler.panels.MemoryPanel',
)

Pympler also needs to be added to the INSTALLED_APPS in the Django settings:

INSTALLED_APPS = INSTALLED_APPS + ('debug_toolbar', 'pympler')

Known issues

Pympler doesn’t correctly handle tracking calls from concurrent threads. In order to get accurate instance counts and
sizes, it’s recommended to only use single-threaded web servers for memory profiling, e.g.:

django-admin runserver --nothreading

Expose a memory-profiling panel to the Django Debug toolbar.

Shows process memory information (virtual size, resident set size) and model instances for the current request.

Requires Django and Django Debug toolbar:

https://github.com/jazzband/django-debug-toolbar

Pympler adds a memory panel as a third party addon (not included in the django-debug-toolbar). It can be added by
overriding the DEBUG_TOOLBAR_PANELS setting in the Django project settings:

DEBUG_TOOLBAR_PANELS = (
'debug_toolbar.panels.timer.TimerDebugPanel',
'pympler.panels.MemoryPanel',
)

Pympler also needs to be added to the INSTALLED_APPS in the Django settings:

INSTALLED_APPS = INSTALLED_APPS + ('debug_toolbar', 'pympler')

7.1.10 Library

Some functions of the library work on the entire object set of your running Python application. Expect some time-
intensive computations.

7.1. Sitemap 33

https://github.com/jazzband/django-debug-toolbar
https://github.com/jazzband/django-debug-toolbar

Pympler Documentation, Release 0.9

Modules

pympler.asizeof

Introduction

This module exposes 9 functions and 2 classes to obtain lengths and sizes of Python objects (for Python 2.6 or later).

Earlier versions of this module supported Python versions down to Python 2.2. If you are using Python 2.5 or older,
please consider downgrading Pympler to version 0.3.x.

Public Functions1

Function asizeof calculates the combined (approximate) size in bytes of one or several Python objects.

Function asizesof returns a tuple containing the (approximate) size in bytes for each given Python object
separately.

Function asized returns for each object an instance of class Asized containing all the size information of
the object and a tuple with the referents2.

Functions basicsize and itemsize return the basic- respectively itemsize of the given object, both in bytes.
For objects as array.array, numpy.array, numpy.matrix, etc. where the item size varies de-
pending on the instance-specific data type, function itemsize returns that item size.

Function flatsize returns the flat size of a Python object in bytes defined as the basic size plus the item size
times the length of the given object.

Function leng returns the length of an object, like standard function len but extended for several types.
E.g. the leng of a multi-precision int (or long) is the number of digits4. The length of most mutable
sequence objects includes an estimate of the over-allocation and therefore, the leng value may differ
from the standard len result. For objects like array.array, numpy.array, numpy.matrix, etc.
function leng returns the proper number of items.

Function refs returns (a generator for) the referents2 of the given object.

Certain classes are known to be sub-classes of or to behave as dict objects. Function adict can be used
to register other class objects to be treated like dict.

Public Classes1

Class Asizer may be used to accumulate the results of several asizeof or asizesof calls. After creating an
Asizer instance, use methods asizeof and asizesof as needed to size any number of additional objects.

Call methods exclude_refs and/or exclude_types to exclude references to respectively instances or types
of certain objects.

Use one of the print_. . . methods to report the statistics.

An instance of class Asized is returned for each object sized by the asized function or method.

Duplicate Objects

Any duplicate, given objects are sized only once and the size is included in the accumulated total only
once. But functions asizesof and asized will return a size value respectively an Asized instance for each
given object, including duplicates.

1 The functions and classes in this module are not thread-safe.
2 The referents of an object are the objects referenced by that object. For example, the referents of a list are the objects held in the list, the

referents of a dict are the key and value objects in the dict, etc.
4 See Python source file .../Include/longinterp.h for the C typedef of digit used in multi-precision int (or long) objects. The C

sizeof(digit) in bytes can be obtained in Python from the int (or long) __itemsize__ attribute. Function leng determines the number of
digits of an int (or long) object.

34 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Definitions3

The length of an objects like dict, list, set, str, tuple, etc. is defined as the number of items
held in or allocated by the object. Held items are references to other objects, called the referents.

The size of an object is defined as the sum of the flat size of the object plus the sizes of any referents2.
Referents are visited recursively up to the specified detail level. However, the size of objects referenced
multiple times is included only once in the total size.

The flat size of an object is defined as the basic size of the object plus the item size times the number
of allocated items, references to referents. The flat size does include the size for the references to the
referents, but not the size of the referents themselves.

The flat size returned by function flatsize equals the result of function asizeof with options code=True,
ignored=False, limit=0 and option align set to the same value.

The accurate flat size for an object is obtained from function sys.getsizeof() where available.
Otherwise, the length and size of sequence objects as dicts, lists, sets, etc. is based on an estimate
for the number of allocated items. As a result, the reported length and size may differ substantially from
the actual length and size.

The basic and item size are obtained from the __basicsize__ respectively __itemsize__ attributes
of the (type of the) object. Where necessary (e.g. sequence objects), a zero __itemsize__ is replaced
by the size of a corresponding C type.

The overhead for Python’s garbage collector (GC) is included in the basic size of (GC managed) objects
as well as the space needed for refcounts (used only in certain Python builds).

Optionally, size values can be aligned to any power-of-2 multiple.

Size of (byte)code

The (byte)code size of objects like classes, functions, methods, modules, etc. can be included by setting
option code=True.

Iterators are handled like sequences: iterated object(s) are sized like referents2, but only up to the specified
level or recursion limit (and only if function gc.get_referents() returns the referent object of
iterators).

Generators are sized as (byte)code only, but the generated objects are never sized.

Old- and New-style Classes

All old- and new-style class, instance and type objects are handled uniformly such that (a) instance
objects are distinguished from class objects and (b) instances of different old-style classes can be dealt
with separately.

Class and type objects are represented as <class* def> respectively <type ... def>
where the * indicates an old-style class and the ... def suffix marks the definition object. Instances of
classes are shown as <class module.name*> without the ... def suffix. The * after the name
indicates an instance of an old-style class.

Ignored Objects

To avoid excessive sizes, several object types are ignored3 by default, e.g. built-in functions, built-in types
and classes5, function globals and module referents. However, any instances thereof and module objects
will be sized when passed as given objects. Ignored object types are included unless option ignored is set
accordingly.

3 These definitions and other assumptions are rather arbitrary and may need corrections or adjustments.
5 Type``s and ``class``es are considered built-in if the ``__module__ of the type or class is listed in the private

_builtin_modules.

7.1. Sitemap 35

Pympler Documentation, Release 0.9

In addition, many __...__ attributes of callable objects are ignored3, except crucial ones, e.g. class
attributes __dict__, __doc__, __name__ and __slots__. For more details, see the type-specific
_..._refs() and _len_...() functions below.

Asizer

class pympler.asizeof.Asized(size, flat, refs=(), name=None)
Stores the results of an asized object in the following 4 attributes:

size – total size of the object (including referents)

flat – flat size of the object (in bytes)

name – name or repr of the object

refs – tuple containing an Asized instance for each referent

class pympler.asizeof.Asizer(**opts)
Sizer state and options to accumulate sizes.

asized(*objs, **opts)
Size each object and return an Asized instance with size information and referents up to the given detail
level (and with modified options, see method set).

If only one object is given, the return value is the Asized instance for that object. The Asized size of
duplicate and ignored objects will be zero.

asizeof(*objs, **opts)
Return the combined size of the given objects (with modified options, see method set).

asizesof(*objs, **opts)
Return the individual sizes of the given objects (with modified options, see method set).

The size of duplicate and ignored objects will be zero.

exclude_refs(*objs)
Exclude any references to the specified objects from sizing.

While any references to the given objects are excluded, the objects will be sized if specified as positional
arguments in subsequent calls to methods asizeof and asizesof.

exclude_types(*objs)
Exclude the specified object instances and types from sizing.

All instances and types of the given objects are excluded, even objects specified as positional arguments in
subsequent calls to methods asizeof and asizesof.

print_profiles(w=0, cutoff=0, **print3options)
Print the profiles above cutoff percentage.

The available options and defaults are:

w=0 – indentation for each line

cutoff=0 – minimum percentage printed

print3options – some keyword arguments, like Python 3+ print

print_stats(objs=(), opts={}, sized=(), sizes=(), stats=3, **print3options)
Prints the statistics.

The available options and defaults are:

36 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

w=0 – indentation for each line

objs=() – optional, list of objects

opts={} – optional, dict of options used

sized=() – optional, tuple of Asized instances returned

sizes=() – optional, tuple of sizes returned

stats=3 – print stats, see function asizeof

print3options – some keyword arguments, like Python 3+ print

print_summary(w=0, objs=(), **print3options)
Print the summary statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

print3options – some keyword arguments, like Python 3+ print

print_typedefs(w=0, **print3options)
Print the types and dict tables.

The available options and defaults are:

w=0 – indentation for each line

print3options – some keyword arguments, like Python 3+ print

set(above=None, align=None, code=None, cutoff=None, frames=None, detail=None, limit=None,
stats=None)
Set some sizing options. See also reset.

The available options are:

above – threshold for largest objects stats

align – size alignment

code – incl. (byte)code size

cutoff – limit large objects or profiles stats

detail – Asized refs level

frames – size or ignore frame objects

limit – recursion limit

stats – print statistics, see function asizeof

Any options not set remain unchanged from the previous setting.

reset(above=1024, align=8, clip=80, code=False, cutoff=10, derive=False, detail=0, frames=False,
ignored=True, infer=False, limit=100, stats=0, stream=None, **extra)

Reset sizing options, state, etc. to defaults.

The available options and default values are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

7.1. Sitemap 37

Pympler Documentation, Release 0.9

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics, see function asizeof

stream=None – output stream for printing

See function asizeof for a description of the options.

Public Functions

pympler.asizeof.adict(*classes)
Install one or more classes to be handled as dict.

pympler.asizeof.asized(*objs, **opts)
Return a tuple containing an Asized instance for each object passed as positional argument.

The available options and defaults are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

If only one object is given, the return value is the Asized instance for that object. Otherwise, the length of the
returned tuple matches the number of given objects.

The Asized size of duplicate and ignored objects will be zero.

Set detail to the desired referents level and limit to the maximum recursion depth.

See function asizeof for descriptions of the other options.

pympler.asizeof.asizeof(*objs, **opts)
Return the combined size (in bytes) of all objects passed as positional arguments.

The available options and defaults are:

38 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

above=0 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

Set align to a power of 2 to align sizes. Any value less than 2 avoids size alignment.

If all is True and if no positional arguments are supplied. size all current gc objects, including module, global
and stack frame objects.

A positive clip value truncates all repr() strings to at most clip characters.

The (byte)code size of callable objects like functions, methods, classes, etc. is included only if code is True.

If derive is True, new types are handled like an existing (super) type provided there is one and only of those.

By default certain base types like object, super, etc. are ignored. Set ignored to False to include those.

If infer is True, new types are inferred from attributes (only implemented for dict types on callable attributes as
get, has_key, items, keys and values).

Set limit to a positive value to accumulate the sizes of the referents of each object, recursively up to the limit.
Using limit=0 returns the sum of the flat sizes of the given objects. High limit values may cause runtime errors
and miss objects for sizing.

A positive value for stats prints up to 9 statistics, (1) a summary of the number of objects sized and seen and a
list of the largests objects with size over above bytes, (2) a simple profile of the sized objects by type and (3+)
up to 6 tables showing the static, dynamic, derived, ignored, inferred and dict types used, found respectively
installed. The fractional part of the stats value (x 100) is the number of largest objects shown for (stats*1.+) or
the cutoff percentage for simple profiles for (*stats*=2.+). For example, *stats=1.10 shows the summary and
the 10 largest objects, also the default.

See this module documentation for the definition of flat size.

pympler.asizeof.asizesof(*objs, **opts)
Return a tuple containing the size (in bytes) of all objects passed as positional arguments.

The available options and defaults are:

above=1024 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

7.1. Sitemap 39

Pympler Documentation, Release 0.9

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

See function asizeof for a description of the options.

The length of the returned tuple equals the number of given objects.

The size of duplicate and ignored objects will be zero.

pympler.asizeof.basicsize(obj, **opts)
Return the basic size of an object (in bytes).

The available options and defaults are:

derive=False – derive type from super type

infer=False – try to infer types

save=False – save the object’s type definition if new

See this module documentation for the definition of basic size.

pympler.asizeof.flatsize(obj, align=0, **opts)
Return the flat size of an object (in bytes), optionally aligned to the given power of 2.

See function basicsize for a description of other available options.

See this module documentation for the definition of flat size.

pympler.asizeof.itemsize(obj, **opts)
Return the item size of an object (in bytes).

See function basicsize for a description of the available options.

See this module documentation for the definition of item size.

pympler.asizeof.leng(obj, **opts)
Return the length of an object (in items).

See function basicsize for a description of the available options.

pympler.asizeof.refs(obj, **opts)
Return (a generator for) specific referents of an object.

See function basicsize for a description of the available options.

pympler.classtracker

The ClassTracker is a facility delivering insight into the memory distribution of a Python program. It can introspect
memory consumption of certain classes and objects. Facilities are provided to track and size individual objects or
all instances of certain classes. Tracked objects are sized recursively to provide an overview of memory distribution
between the different tracked objects.

40 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Classes

class pympler.classtracker.ClassTracker(stream=None)

clear()
Clear all gathered data and detach from all tracked objects/classes.

create_snapshot(description=”, compute_total=False)
Collect current per instance statistics and saves total amount of memory associated with the Python pro-
cess.

If compute_total is True, the total consumption of all objects known to asizeof is computed. The latter
might be very slow if many objects are mapped into memory at the time the snapshot is taken. Therefore,
compute_total is set to False by default.

The overhead of the ClassTracker structure is also computed.

Snapshots can be taken asynchronously. The function is protected with a lock to prevent race conditions.

detach_all()
Detach from all tracked classes and objects. Restore the original constructors and cleanse the tracking
lists.

detach_all_classes()
Detach from all tracked classes.

detach_class(cls)
Stop tracking class ‘cls’. Any new objects of that type are not tracked anymore. Existing objects are still
tracked.

start_periodic_snapshots(interval=1.0)
Start a thread which takes snapshots periodically. The interval specifies the time in seconds the thread
waits between taking snapshots. The thread is started as a daemon allowing the program to exit. If periodic
snapshots are already active, the interval is updated.

stop_periodic_snapshots()
Post a stop signal to the thread that takes the periodic snapshots. The function waits for the thread to
terminate which can take some time depending on the configured interval.

track_class(cls, name=None, resolution_level=0, keep=False, trace=False)
Track all objects of the class cls. Objects of that type that already exist are not tracked. If track_class
is called for a class already tracked, the tracking parameters are modified. Instantiation traces can be
generated by setting trace to True. A constructor is injected to begin instance tracking on creation of the
object. The constructor calls track_object internally.

Parameters

• cls – class to be tracked, may be an old-style or a new-style class

• name – reference the class by a name, default is the concatenation of module and class
name

• resolution_level – The recursion depth up to which referents are sized individually.
Resolution level 0 (default) treats the object as an opaque entity, 1 sizes all direct referents
individually, 2 also sizes the referents of the referents and so forth.

• keep – Prevent the object’s deletion by keeping a (strong) reference to the object.

• trace – Save instantiation stack trace for each instance

track_object(instance, name=None, resolution_level=0, keep=False, trace=False)
Track object ‘instance’ and sample size and lifetime information. Not all objects can be tracked; trackable

7.1. Sitemap 41

Pympler Documentation, Release 0.9

objects are class instances and other objects that can be weakly referenced. When an object cannot be
tracked, a TypeError is raised.

Parameters

• resolution_level – The recursion depth up to which referents are sized individually.
Resolution level 0 (default) treats the object as an opaque entity, 1 sizes all direct referents
individually, 2 also sizes the referents of the referents and so forth.

• keep – Prevent the object’s deletion by keeping a (strong) reference to the object.

pympler.classtracker_stats

Provide saving, loading and presenting gathered ClassTracker statistics.

Classes

class pympler.classtracker_stats.Stats(tracker=None, filename=None, stream=None)
Presents the memory statistics gathered by a ClassTracker based on user preferences.

__init__(tracker=None, filename=None, stream=None)
Initialize the data log structures either from a ClassTracker instance (argument tracker) or a previously
dumped file (argument filename).

Parameters

• tracker – ClassTracker instance

• filename – filename of previously dumped statistics

• stream – where to print statistics, defaults to sys.stdout

dump_stats(fdump, close=True)
Dump the logged data to a file. The argument file can be either a filename or an open file object that
requires write access. close controls if the file is closed before leaving this method (the default behaviour).

load_stats(fdump)
Load the data from a dump file. The argument fdump can be either a filename or an open file object that
requires read access.

reverse_order()
Reverse the order of the tracked instance index self.sorted.

sort_stats(*args)
Sort the tracked objects according to the supplied criteria. The argument is a string identifying the ba-
sis of a sort (example: ‘size’ or ‘classname’). When more than one key is provided, then additional
keys are used as secondary criteria when there is equality in all keys selected before them. For example,
sort_stats('name', 'size') will sort all the entries according to their class name, and resolve
all ties (identical class names) by sorting by size. The criteria are fields in the tracked object instances.
Results are stored in the self.sorted list which is used by Stats.print_stats() and other
methods. The fields available for sorting are:

‘classname’ the name with which the class was registered

‘name’ the classname

‘birth’ creation timestamp

‘death’ destruction timestamp

42 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

‘size’ the maximum measured size of the object

‘tsize’ the measured size during the largest snapshot

‘repr’ string representation of the object

Note that sorts on size are in descending order (placing most memory consuming items first), whereas
name, repr, and creation time searches are in ascending order (alphabetical).

The function returns self to allow calling functions on the result:

stats.sort_stats('size').reverse_order().print_stats()

class pympler.classtracker_stats.ConsoleStats(tracker=None, filename=None,
stream=None)

Presentation layer for Stats to be used in text-based consoles.

__init__(tracker=None, filename=None, stream=None)
Initialize the data log structures either from a ClassTracker instance (argument tracker) or a previously
dumped file (argument filename).

Parameters

• tracker – ClassTracker instance

• filename – filename of previously dumped statistics

• stream – where to print statistics, defaults to sys.stdout

print_stats(clsname=None, limit=1.0)
Write tracked objects to stdout. The output can be filtered and pruned. Only objects are printed whose
classname contain the substring supplied by the clsname argument. The output can be pruned by passing
a limit value.

Parameters

• clsname – Only print objects whose classname contain the given substring.

• limit – If limit is a float smaller than one, only the supplied percentage of the total
tracked data is printed. If limit is bigger than one, this number of tracked objects are
printed. Tracked objects are first filtered, and then pruned (if specified).

print_summary()
Print per-class summary for each snapshot.

class pympler.classtracker_stats.HtmlStats(tracker=None, filename=None,
stream=None)

Output the ClassTracker statistics as HTML pages and graphs.

__init__(tracker=None, filename=None, stream=None)
Initialize the data log structures either from a ClassTracker instance (argument tracker) or a previously
dumped file (argument filename).

Parameters

• tracker – ClassTracker instance

• filename – filename of previously dumped statistics

• stream – where to print statistics, defaults to sys.stdout

create_html(fname, title=’ClassTracker Statistics’)
Create HTML page fname and additional files in a directory derived from fname.

7.1. Sitemap 43

Pympler Documentation, Release 0.9

pympler.garbagegraph

Garbage occurs if objects refer too each other in a circular fashion. Such reference cycles cannot be freed automat-
ically and must be collected by the garbage collector. While it is sometimes hard to avoid creating reference cycles,
preventing such cycles saves garbage collection time and limits the lifetime of objects. Moreover, some objects cannot
be collected by the garbage collector.

Reference cycles can be visualized with the help of graphviz.

Classes

class pympler.garbagegraph.GarbageGraph(reduce=False, collectable=True)
The GarbageGraph is a ReferenceGraph that illustrates the objects building reference cycles. The
garbage collector is switched to debug mode (all identified garbage is stored in gc.garbage) and the garbage
collector is invoked. The collected objects are then illustrated in a directed graph.

Large graphs can be reduced to the actual cycles by passing reduce=True to the constructor.

It is recommended to disable the garbage collector when using the GarbageGraph.

>>> from pympler.garbagegraph import GarbageGraph, start_debug_garbage
>>> start_debug_garbage()
>>> l = []
>>> l.append(l)
>>> del l
>>> gb = GarbageGraph()
>>> gb.render('garbage.eps')
True

__init__(reduce=False, collectable=True)
Initialize the GarbageGraph with the objects identified by the garbage collector. If collectable is true, every
reference cycle is recorded. Otherwise only uncollectable objects are reported.

render(filename, cmd=’dot’, format=’ps’, unflatten=False)
Render the graph to filename using graphviz. The graphviz invocation command may be overridden by
specifying cmd. The format may be any specifier recognized by the graph renderer (‘-Txxx’ command).
The graph can be preprocessed by the unflatten tool if the unflatten parameter is True. If there are no objects
to illustrate, the method does not invoke graphviz and returns False. If the renderer returns successfully
(return code 0), True is returned.

An OSError is raised if the graphviz tool cannot be found.

split()
Split the graph into sub-graphs. Only connected objects belong to the same graph. split yields copies of
the Graph object. Shallow copies are used that only replicate the meta-information, but share the same
object list self.objects.

>>> from pympler.refgraph import ReferenceGraph
>>> a = 42
>>> b = 'spam'
>>> c = {a: b}
>>> t = (1,2,3)
>>> rg = ReferenceGraph([a,b,c,t])
>>> for subgraph in rg.split():
... print (subgraph.index)
0
1

44 Chapter 7. Table of Content

http://www.graphviz.org

Pympler Documentation, Release 0.9

write_graph(filename)
Write raw graph data which can be post-processed using graphviz.

print_stats(stream=None)
Log annotated garbage objects to console or file.

Parameters stream – open file, uses sys.stdout if not given

Functions

pympler.garbagegraph.start_debug_garbage()
Turn off garbage collector to analyze collectable reference cycles.

pympler.garbagegraph.end_debug_garbage()
Turn garbage collection on and disable debug output.

pympler.muppy

Functions

pympler.muppy.get_objects(remove_dups=True, include_frames=False)
Return a list of all known objects excluding frame objects.

If (outer) frame objects shall be included, pass include_frames=True. In order to prevent building
reference cycles, the current frame object (of the caller of get_objects) is ignored. This will not
prevent creating reference cycles if the object list is passed up the call-stack. Therefore, frame
objects are not included by default.

Keyword arguments: remove_dups – if True, all duplicate objects will be removed. include_frames
– if True, includes frame objects.

pympler.muppy.get_size(objects)
Compute the total size of all elements in objects.

pympler.muppy.get_diff(left, right)
Get the difference of both lists.

The result will be a dict with this form {‘+’: [], ‘-‘: []}. Items listed in ‘+’ exist only in the right list,
items listed in ‘-‘ exist only in the left list.

pympler.muppy.sort(objects)
Sort objects by size in bytes.

pympler.muppy.filter(objects, Type=None, min=-1, max=-1)
Filter objects.

The filter can be by type, minimum size, and/or maximum size.

Keyword arguments: Type – object type to filter by min – minimum object size max – maximum
object size

pympler.muppy.get_referents(object, level=1)
Get all referents of an object up to a certain level.

The referents will not be returned in a specific order and will not contain duplicate objects. Duplicate
objects will be removed.

Keyword arguments: level – level of indirection to which referents considered.

This function is recursive.

7.1. Sitemap 45

Pympler Documentation, Release 0.9

pympler.process

This module queries process memory allocation metrics from the operating system. It provides a platform independent
layer to get the amount of virtual and physical memory allocated to the Python process.

Different mechanisms are implemented: Either the process stat file is read (Linux), the ps command is executed
(BSD/OSX/Solaris) or the resource module is queried (Unix fallback). On Windows try to use the win32 module if
available. If all fails, return 0 for each attribute.

Windows without the win32 module is not supported.

>>> from pympler.process import ProcessMemoryInfo
>>> pmi = ProcessMemoryInfo()
>>> print ("Virtual size [Byte]: " + str(pmi.vsz)) # doctest: +ELLIPSIS
Virtual size [Byte]: ...

Classes

class pympler.process._ProcessMemoryInfo
Stores information about various process-level memory metrics. The virtual size is stored in attribute vsz, the
physical memory allocated to the process in rss, and the number of (major) pagefaults in pagefaults. On Linux,
data_segment, code_segment, shared_segment and stack_segment contain the number of Bytes allocated for the
respective segments. This is an abstract base class which needs to be overridden by operating system specific
implementations. This is done when importing the module.

update()
Refresh the information using platform instruments. Returns true if this operation yields useful values on
the current platform.

pympler.process.is_available()
Convenience function to check if the current platform is supported by this module.

pympler.refbrowser

Tree-like exploration of object referrers.

This module provides a base implementation for tree-like referrers browsing. The two non-interactive classes Con-
soleBrowser and FileBrowser output a tree to the console or a file. One graphical user interface for referrers browsing
is provided as well. Further types can be subclassed.

All types share a similar initialisation. That is, you provide a root object and may specify further settings such as the
initial depth of the tree or an output function. Afterwards you can print the tree which will be arranged based on your
previous settings.

The interactive browser is based on a TreeWidget implemented in IDLE. It is available only if you have Tcl/Tk
installed. If you try to instantiate the interactive browser without having Tkinter installed, an ImportError will be
raised.

Classes

class pympler.refbrowser.RefBrowser(rootobject, maxdepth=3, str_func=<function
_repr>, repeat=True, stream=None)

Base class to other RefBrowser implementations.

46 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

This base class provides means to extract a tree from a given root object and holds information on
already known objects (to avoid repetition if requested).

get_tree()
Get a tree of referrers of the root object.

class pympler.refbrowser.ConsoleBrowser(*args, **kwargs)
RefBrowser that prints to the console (stdout).

print_tree(tree=None)
Print referrers tree to console.

keyword arguments tree – if not None, the passed tree will be printed. Otherwise it is based on
the rootobject.

class pympler.refbrowser.FileBrowser(rootobject, maxdepth=3, str_func=<function _repr>,
repeat=True, stream=None)

RefBrowser implementation which prints the tree to a file.

print_tree(filename, tree=None)
Print referrers tree to file (in text format).

keyword arguments tree – if not None, the passed tree will be printed.

class pympler.refbrowser.InteractiveBrowser(rootobject, maxdepth=3, str_func=<function
gui_default_str_function>, repeat=True)

Interactive referrers browser.

The interactive browser is based on a TreeWidget implemented in IDLE. It is available only if you have Tcl/Tk
installed. If you try to instantiate the interactive browser without having Tkinter installed, an ImportError will
be raised.

main(standalone=False)
Create interactive browser window.

keyword arguments standalone – Set to true, if the browser is not attached to other windows

pympler.refgraph

This module exposes utilities to illustrate objects and their references as (directed) graphs. The current implementation
requires ‘graphviz’ to be installed.

Classes

class pympler.refgraph.ReferenceGraph(objects, reduce=False)
The ReferenceGraph illustrates the references between a collection of objects by rendering a directed graph.
That requires that ‘graphviz’ is installed.

>>> from pympler.refgraph import ReferenceGraph
>>> a = 42
>>> b = 'spam'
>>> c = {a: b}
>>> gb = ReferenceGraph([a,b,c])
>>> gb.render('spam.eps')
True

__init__(objects, reduce=False)
Initialize the ReferenceGraph with a collection of objects.

7.1. Sitemap 47

Pympler Documentation, Release 0.9

render(filename, cmd=’dot’, format=’ps’, unflatten=False)
Render the graph to filename using graphviz. The graphviz invocation command may be overridden by
specifying cmd. The format may be any specifier recognized by the graph renderer (‘-Txxx’ command).
The graph can be preprocessed by the unflatten tool if the unflatten parameter is True. If there are no objects
to illustrate, the method does not invoke graphviz and returns False. If the renderer returns successfully
(return code 0), True is returned.

An OSError is raised if the graphviz tool cannot be found.

split()
Split the graph into sub-graphs. Only connected objects belong to the same graph. split yields copies of
the Graph object. Shallow copies are used that only replicate the meta-information, but share the same
object list self.objects.

>>> from pympler.refgraph import ReferenceGraph
>>> a = 42
>>> b = 'spam'
>>> c = {a: b}
>>> t = (1,2,3)
>>> rg = ReferenceGraph([a,b,c,t])
>>> for subgraph in rg.split():
... print (subgraph.index)
0
1

write_graph(filename)
Write raw graph data which can be post-processed using graphviz.

pympler.summary

A collection of functions to summarize object information.

This module provides several function which will help you to analyze object information which was gathered. Often
it is sufficient to work with aggregated data instead of handling the entire set of existing objects. For example can a
memory leak identified simple based on the number and size of existing objects.

A summary contains information about objects in a table-like manner. Technically, it is a list of lists. Each of these
lists represents a row, whereas the first column reflects the object type, the second column the number of objects, and
the third column the size of all these objects. This allows a simple table-like output like the following:

types # objects total size
<type ‘dict’> 2 560
<type ‘str’> 3 126
<type ‘int’> 4 96
<type ‘long’> 2 66
<type ‘list’> 1 40

Another advantage of summaries is that they influence the system you analyze only to a minimum. Working with
references to existing objects will keep these objects alive. Most of the times this is no desired behavior (as it will have
an impact on the observations). Using summaries reduces this effect greatly.

output representation

The output representation of types is defined in summary.representations. Every type defined in this dictionary will be
represented as specified. Each definition has a list of different representations. The later a representation appears in

48 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

this list, the higher its verbosity level. From types which are not defined in summary.representations the default str()
representation will be used.

Per default, summaries will use the verbosity level 1 for any encountered type. The reason is that several computations
are done with summaries and rows have to remain comparable. Therefore information which reflect an objects state,
e.g. the current line number of a frame, should not be included. You may add more detailed information at higher
verbosity levels than 1.

functions

pympler.summary.summarize(objects)
Summarize an objects list.

Return a list of lists, whereas each row consists of:: [str(type), number of objects of this type, total size of
these objects].

No guarantee regarding the order is given.

pympler.summary.get_diff(left, right)
Get the difference of two summaries.

Subtracts the values of the right summary from the values of the left summary. If similar rows appear on both
sides, the are included in the summary with 0 for number of elements and total size. If the number of elements
of a row of the diff is 0, but the total size is not, it means that objects likely have changed, but not there number,
thus resulting in a changed size.

pympler.summary.print_(rows, limit=15, sort=’size’, order=’descending’)
Print the rows as a summary.

Keyword arguments: limit – the maximum number of elements to be listed sort – sort elements by ‘size’, ‘type’,
or ‘#’ order – sort ‘ascending’ or ‘descending’

pympler.tracker

The tracker module allows you to track changes in the memory usage over time.

Using the SummaryTracker, you can create summaries and compare them with each other. Stored summaries can be
ignored during comparison, avoiding the observer effect.

The ObjectTracker allows to monitor object creation. You create objects from one time and compare with objects from
an earlier time.

Classes

class pympler.tracker.SummaryTracker(ignore_self=True)
Helper class to track changes between two summaries taken.

Detailed information on single objects will be lost, e.g. object size or object id. But often summaries
are sufficient to monitor the memory usage over the lifetime of an application.

On initialisation, a first summary is taken. Every time diff is called, a new summary will be created.
Thus, a diff between the new and the last summary can be extracted.

Be aware that filtering out previous summaries is time-intensive. You should therefore restrict your-
self to the number of summaries you really need.

7.1. Sitemap 49

Pympler Documentation, Release 0.9

diff(summary1=None, summary2=None)
Compute diff between to summaries.

If no summary is provided, the diff from the last to the current summary is used. If summary1 is
provided the diff from summary1 to the current summary is used. If summary1 and summary2
are provided, the diff between these two is used.

print_diff(summary1=None, summary2=None)
Compute diff between to summaries and print it.

If no summary is provided, the diff from the last to the current summary is used. If summary1 is
provided the diff from summary1 to the current summary is used. If summary1 and summary2
are provided, the diff between these two is used.

store_summary(key)
Store a current summary in self.summaries.

class pympler.tracker.ObjectTracker
Helper class to track changes in the set of existing objects.

Each time you invoke a diff with this tracker, the objects which existed during the last invocation are
compared with the objects which exist during the current invocation.

Please note that in order to do so, strong references to all objects will be stored. This means that
none of these objects can be garbage collected. A use case for the ObjectTracker is the monitoring
of a state which should be stable, but you see new objects being created nevertheless. With the
ObjectTracker you can identify these new objects.

get_diff(ignore=())
Get the diff to the last time the state of objects was measured.

keyword arguments ignore – list of objects to ignore

print_diff(ignore=())
Print the diff to the last time the state of objects was measured.

keyword arguments ignore – list of objects to ignore

pympler.web

This module provides a web-based memory profiling interface. The Pympler web frontend exposes process informa-
tion, tracker statistics, and garbage graphs. The web frontend uses Bottle, a lightweight Python web framework. Bottle
is packaged with Pympler.

The web server can be invoked almost as easily as setting a breakpoint using pdb:

from pympler.web import start_profiler
start_profiler()

Calling start_profiler suspends the current thread and executes the Pympler web server, exposing profiling data
and various facilities of the Pympler library via a graphic interface.

Functions

pympler.web.start_profiler(host=’localhost’, port=8090, tracker=None, stats=None, de-
bug=False, **kwargs)

Start the web server to show profiling data. The function suspends the Python application (the current thread)
until the web server is stopped.

50 Chapter 7. Table of Content

http://bottlepy.org

Pympler Documentation, Release 0.9

The only way to stop the server is to signal the running thread, e.g. press Ctrl+C in the console. If this isn’t
feasible for your application use start_in_background instead.

During the execution of the web server, profiling data is (lazily) cached to improve performance. For example,
garbage graphs are rendered when the garbage profiling data is requested and are simply retransmitted upon
later requests.

The web server can display profiling data from previously taken snapshots when tracker or stats is specified. The
former is useful for profiling a running application, the latter for off-line analysis. Requires existing snapshots
taken with create_snapshot() or start_periodic_snapshots().

Parameters

• host – the host where the server shall run, default is localhost

• port – server listens on the specified port, default is 8090 to allow coexistance with com-
mon web applications

• tracker – ClassTracker instance, browse profiling data (on-line analysis)

• stats – Stats instance, analyze ClassTracker profiling dumps (useful for off-line analysis)

pympler.web.start_in_background(**kwargs)
Start the web server in the background. A new thread is created which serves the profiling interface without
suspending the current application.

For the documentation of the parameters see start_profiler.

Returns the created thread object.

7.1.11 Pympler Tutorials

• Tutorial - Track Down Memory Leaks - This tutorial shows you ways in which muppy can be used to track down
memory leaks.

• Tutorial - Tracking Class Instances in SCons - A tutorial illustrating how to use the ClassTracker facility.

Table of Content

Tutorial - Track Down Memory Leaks

This tutorial shows you ways in which muppy can be used to track down memory leaks. From my experience, this can
be done in 3 steps, each answering a different question.

1. Is there a leak?

2. What objects leak?

3. Where does it leak?

IDLE

My first real-life test for muppy was IDLE, which is “the Python IDE built with the Tkinter GUI toolkit.” It offers the
following features:

• coded in 100% pure Python, using the Tkinter GUI toolkit

• cross-platform: works on Windows and Unix (on Mac OS, there are currently problems with Tcl/Tk)

7.1. Sitemap 51

http://docs.python.org/lib/idle.html

Pympler Documentation, Release 0.9

• multi-window text editor with multiple undo, Python colorizing and many other features, e.g. smart indent and
call tips

• Python shell window (a.k.a. interactive interpreter)

• debugger (not complete, but you can set breakpoints, view and step)

Because it is integrated in every Python distribution, runs locally and provides easy interactive feedback, it was a nice
first candidate to test the tools of muppy.

The task was to check if IDLE leaks memory, if so, what objects are leaking, and finally, why are they leaking.

Preparations

IDLE is part of every Python distribution and can be found at Lib/idlelib. The modified version which makes
use of muppy can be found at http://code.google.com/p/muppy/source/browse/trunk#trunk/playground/idlelib.

With IDLE having a GUI, I also wanted to be able to interact with muppy through the GUI. This can be done in Lib/
idlelib/Bindings.py and Lib/idlelib/PyShell.py. For details, please refer to the modified version
mentioned above.

Task 1: Is there a leak?

At first, we need to find out if there are any objects leaking at all. We will have a look at the objects, invoke an action,
and look at the objects again.

from pympler import tracker

self.memory_tracker = tracker.SummaryTracker()
self.memory_tracker.print_diff()

The last step is repeated after each invocation. Let’s start with something simple which should not leak. We will check
the Windows resize. You can invoke it in the menu at Windows->Zoom Height.

At first call print_diff till it has calibrated. That is, the first one or two times, you will get some output because there
is still something going on in the background. But then you should get this:

types | # objects | total size
====== | =========== | ============

Which means nothing has changed since the last invocation of print_diff. Now let’s call Windows->Zoom Height and
invoke print_diff again.:

types | # objects | total size
================== | =========== | ============

dict | 1 | 280 B
list | 1 | 176 B

_sre.SRE_Pattern | 1 | 88 B
tuple | 1 | 80 B
str | 0 | 7 B

Seems as this requires some of the above mentioned objects. Let’s repeat it.:

types | # objects | total size
====== | =========== | ============

52 Chapter 7. Table of Content

http://code.google.com/p/muppy/source/browse/trunk#trunk/playground/idlelib

Pympler Documentation, Release 0.9

Okay, nothing changed, so nothing is leaking. But we see that often, the first call to a function creates some objects,
which then exist on a second invocation.

Next, we try something different. We will open a new window. Let’s have a look at the Path Browser at File->Path
Browser.:

types | # objects | total size
=== | =========== | ============

dict | 18 | 14.26 KB
tuple | 146 | 13.17 KB
list | 2 | 11.67 KB
str | 97 | 7.85 KB

code | 46 | 5.52 KB
function | 45 | 5.40 KB
classobj | 9 | 864 B

instancemethod (<function wakeup>) | 3 | 240 B
instancemethod (<function __call__>) | 3 | 240 B

instance(<class Tkinter.CallWrapper>) | 3 | 216 B
module | 3 | 168 B

instance(<class idlelib.WindowList.ListedToplevel>) | 1 | 72 B

Let’s repeat it.:

types | # objects | total size
=== | =========== | ============

dict | 5 | 2.17 KB
list | 0 | 384 B
str | 5 | 259 B

instancemethod (<function wakeup>) | 3 | 240 B
instancemethod (<function __call__>) | 3 | 240 B

instance(<class Tkinter.CallWrapper>) | 3 | 216 B
instance(<class idlelib.WindowList.ListedToplevel>) | 1 | 72 B

Mh, still some new objects. Repeating this procedure several times will reveal that here indeed we have a leak.

Task 2: What objects leak?

So let’s have a closer look at the diff. We see 5 new dicts and strings, a bit more memory usage by lists, 3 wakeup and
__call__ instance methods, 3 CallWrapper and 1 ListedToplevel. We know the standard types, but the last couple of
objects seem to be from IDLE.

We ignore the standard type objects for now. It is more likely that these are only children of some other instances
which are causing the leak.

We start with the ListedTopLevel object. One invocation of File->Path Browser and one more of this type looks like
this object is not garbage collected, although it should have been. Searching for ListedTopLevel in idlelib/ reveals that
is the base class to all window objects of IDLE. We can assume that opening the Path Browser, a new window object
is created, but closing the window does not remove the reference.

Next, we take a look at the wakeup instance method of which we have three more on each invocation. Searching the
code, we find it to be defined in idlelib/WindowList.py. This piece of code is used to give users of IDLE a list of
currently open windows. Every time a new window is created, it will be added to the Windows menu, from where the
user can select any open window. wakeup is the method which will bring the selected window up front. Adding a
window calls menu.add_command, linking menu and the wakeup command together.

7.1. Sitemap 53

Pympler Documentation, Release 0.9

menu.add_command(label=title, command=window.wakeup)

So we are getting closer. Only __call__ and Tkinter.CallWrapper are left. As the name indicates, the latter is located
in the Tkinter module, which is part of the standard library of Python. So let’s dive into it. The CallWrapper docstring
states:

Internal class. Stores function to call when some user defined Tcl function is
called e.g. after an event occurred.

Also, CallWrapper contains a method called __call__, which is used to invoke the stored function call. A CallWrapper
is created by the method _register which then creates a command (Tk speak) and adds it’s name to a list called
self._tclCommands.

So what do we know so far? Every time a Path Browser is opened, a window is created, but not deleted when closed
again. It has something to do with the wakeup method of the window. This method is wrapped as a Tcl command and
then linked to the window list menu. Also, we have traced this wrapping back to Tkinter library, where names of the
function wrappers are stored in an attribute called _tclCommands.

This brings us to the third question.

Task 3: Where is the leak?

_tclCommands stores the names of all commands linked to a widget. The base class for interior widgets (of which the
menu is one), has a method called destroy which:

Delete all Tcl commands created for this widget in the Tcl
interpreter.

as well as a method deletecommand which deletes a single Tcl command. Both remove commands as by there name.
Among them, we find our CallWrappers’ __call__ used to wrap the wakeup of the Path Browser window.

So we should expect at least either one to be invoked when a window is closed (best would be the invocation of
only deletecommand). This would also go in line with menu.add_command we identified above. And indeed, in
idlelib/EditorWindow.py, menu.delete is called. So where is the problem?

We return to Tkinter.py and have a closer look at delete method:

def delete(self, index1, index2=None):
"""Delete menu items between INDEX1 and INDEX2 (not included)."""
self.tk.call(self._w, 'delete', index1, index2)

Mh, it looks like the menu item is deleted, but what about the attached command? Let’s ask the Web for “tkinter
deletecommand”. Turns out that somebody some years ago filed a bug (see bugreport) which states:

Tkinter.Menu.delete does not delete the commands
defined for the entries it deletes. Those objects
will be retained until the menu itself is deleted.
[..]
the command function will still be referenced and
kept in memory - until the menu object itself is
destroyed.

Well, this seems to be the root of our memory leak. Let’s adapt the delete method a bit, so that the associated commands
are deleted as well:

54 Chapter 7. Table of Content

http://bugs.python.org/issue1342811

Pympler Documentation, Release 0.9

def delete(self, index1, index2=None):
"""Delete menu items between INDEX1 and INDEX2 (not included)."""
if index2 is None:

index2 = index1
cmds = []
(num_index1, num_index2) = (self.index(index1), self.index(index2))
if (num_index1 is not None) and (num_index2 is not None):

for i in range(num_index1, num_index2 + 1):
if 'command' in self.entryconfig(i):

c = str(self.entrycget(i, 'command'))
if c in self._tclCommands:

cmds.append(c)
self.tk.call(self._w, 'delete', index1, index2)
for c in cmds:

self.deletecommand(c)

Now we restart IDLE, calibrate our tracker and do another round of print_diff. After the first time the Path Browser is
opened we get this:

types | # objects | total size
========== | =========== | ============

tuple | 146 | 13.17 KB
dict | 13 | 12.01 KB
list | 2 | 11.26 KB
str | 92 | 7.59 KB

code | 46 | 5.52 KB
function | 45 | 5.40 KB
classobj | 9 | 864 B
module | 3 | 168 B

Okay, still some objects created, but no more instances and instance methods. Let’s do it again.:

types | # objects | total size
======= | =========== | ============

Yes, this looks definitely better. The memory leak is gone.

The problem is fixed for Python versions 2.5 and higher so updated installations will not face this leak.

Tutorial - Tracking Class Instances in SCons

This tutorial demonstrates the class tracking facility to profile and optimize a non-trivial program. SCons is a next-
generation build system with a quite elaborate architecture and thus an interesting candidate for profiling attempts.

Before we begin, it should be identified what shall be tracked, i.e. what classes we want to connect to and whose
instances are to be sized and profiled. In this tutorial, the effect of a patch is analyzed that tries to size-optimize the
very heart of SCons - the Node class. Naturally, we will connect to the Node base class and its sub-classes. It makes
sense to put the profiling data in context and track additional classes that are believed to contribute significantly to the
total memory consumption.

Installing hooks into SCons

The first step is to find the proper spots for connecting to the classes that shall be tracked, taking snapshots, and printing
the gathered profile data. SCons has a simple memory profiling tool that we will override. The SCons MemStats class
provides all we need:

7.1. Sitemap 55

http://www.scons.org
http://scons.tigris.org/issues/show_bug.cgi?id=2198

Pympler Documentation, Release 0.9

from pympler.classtracker import ClassTracker

class MemStats(Stats):
def __init__(self):

Stats.__init__(self)
classes = [SCons.Node.Node, SCons.Node.FS.Base, SCons.Node.FS.File,

SCons.Node.FS.Dir, SCons.Executor.Executor]
self.tracker = ClassTracker()
for c in classes:

self.tracker.track_class(c)
def do_append(self, label):

self.tracker.create_snapshot(label)
def do_print(self):

stats = self.tracker.stats
stats.print_summary()
stats.dump_stats('pympler.stats')

When SCons starts, MemStats is instantiated and the ClassTracker is connected to a number of classes. SCons has
predefined spots where it invokes its statistics facilities with do_append being called. This is where snapshosts will
be taken of all objects tracked so far.

Because of the large number of instances, only a summary is printed to the console via stats.print_summary()
and the profile data is dumped to a file in case per-instance profile information is needed later.

Test run

Time for a test. In the following examples, SCons builds a non-trivial program with a fair number of nodes. Running
SCons via scons --debug=memory will print the gathered data to the console:

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.
---- SUMMARY --
before reading SConscript files: active 4.17 MB average pct

SCons.Executor.Executor 7 7.53 KB 1.08 KB 0%
SCons.Node.FS.Base 1 9.30 KB 9.30 KB 0%
SCons.Node.FS.Dir 6 17.77 KB 2.96 KB 0%
SCons.Node.FS.File 1 2.91 KB 2.91 KB 0%
SCons.Node.Node 0 0 B 0 B 0%

after reading SConscript files: active 13.06 MB average pct
[...]

before building targets: active 13.41 MB average pct
[...]

after building targets: active 34.77 MB average pct
SCons.Executor.Executor 1311 3.57 MB 2.79 KB 10%
SCons.Node.FS.Base 1102 4.84 MB 4.50 KB 13%
SCons.Node.FS.Dir 108 5.67 MB 53.72 KB 16%
SCons.Node.FS.File 2302 10.45 MB 4.65 KB 30%
SCons.Node.Node 1 84.93 KB 84.93 KB 0%

56 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Making sense of the data

The console output may give a brief overview how much memory is allocated by instances of the individual tracked
classes. A more appealing and well arranged representation of the data can be generated with the HtmlStats class.
The dump generated previously can be loaded and a set of HTML pages can be emitted:

from pympler.classtracker_stats import HtmlStats

stats = HtmlStats()
stats.load_stats('pympler.stats')
stats.create_html('pympler.html')

If matplotlib is installed, charts will be embedded in the HTML output:

At first sight it might seem suspicious that the tracked classes appear to be the sole contributors to the total memory
footprint of the application. Because the tracked objects are sized recursively, referenced objects which are not tracked
themselves are added to the referrers account. Thus, a root object’s size will include the size of every leaf unless the
leaf is also tracked by the ClassTracker.

Optimization attempt

After applying the patch by Jean Brouwers, SCons is rerun under the supervision of the ClassTracker. The differences
in the last snapshot show that the changes indeed reduce the memory footprint of Node instances:

7.1. Sitemap 57

http://scons.tigris.org/issues/show_bug.cgi?id=2198

Pympler Documentation, Release 0.9

$ scons --debug=memory
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.
---- SUMMARY --
[...]
after building targets: active 32.41 MB average pct

SCons.Executor.Executor 1311 3.50 MB 2.73 KB 10%
SCons.Node.FS.Base 1102 4.29 MB 3.98 KB 13%
SCons.Node.FS.Dir 108 5.52 MB 52.30 KB 17%
SCons.Node.FS.File 2302 8.82 MB 3.92 KB 27%
SCons.Node.Node 1 84.32 KB 84.32 KB 0%

The total measured memory footprint dropped from 34.8MB to 32.4MB, File nodes’ average size from 4.6KB to
3.9KB.

Summary

This tutorial illustrated how applications can be profiled with the ClassTracker facility. It has been shown how the
memory impact of changes can be quantified.

7.1.12 Related Work

Pympler is a merger of several approaches toward memory profiling of Python applications. This page lists other
known tools. If you know yet another one or find the description is not correct you can create a new issue at http:
//code.google.com/p/pympler/issues.

asizeof

Asizeof is a pure-Python module to estimate the size of objects by Jean Brouwers. This implementation has been pub-
lished previously on aspn.activestate.com. It is possible to determine the size of an object and its referents recursively
up to a specified level. asizeof is also distributed with muppy and allows the usage of muppy with Python versions
prior to Python 2.6.

asizeof has become a part of Pympler.

URL: http://code.activestate.com/recipes/546530/

Heapmonitor

“The Heapmonitor is a facility delivering insight into the memory distribution of SCons. It provides facilities to size
individual objects and can track all objects of certain classes.” It was developed in 2008 by Ludwig Haehne.

URL: http://www.scons.org/wiki/LudwigHaehne/HeapMonitor

Heapmonitor has become a part of Pympler.

58 Chapter 7. Table of Content

http://code.google.com/p/pympler/issues
http://code.google.com/p/pympler/issues
http://code.activestate.com/recipes/546530/
http://www.scons.org/wiki/LudwigHaehne/HeapMonitor

Pympler Documentation, Release 0.9

Heapy

Heapy was part of the Master thesis by Sverker Nilsson done in 2006. It is part of the umbrella project guppy. Heapy
has a very mathematical approach as it works in terms of sets, partitions, and equivalence relations. It allows to gather
information about objects at any given time, but only objects starting from a specific root object. Type information for
standard objects is supported by default and type information for non-standard object types can be added through an
interface.

URL: http://guppy-pe.sourceforge.net

Meliae

“This project is similar to heapy (in the ‘guppy’ project), in its attempt to understand how memory has been allocated.

Currently, its main difference is that it splits the task of computing summary statistics, etc of memory consumption
from the actual scanning of memory consumption. It does this, because I often want to figure out what is going on in my
process, while my process is consuming huge amounts of memory (1GB, etc). It also allows dramatically simplifying
the scanner, as I don’t allocate python objects while trying to analyze python object memory consumption.”

Meliae is being developed by John A Meinel since 2009. It is well suited for offline analysis of full memory dumps.

URL: https://launchpad.net/meliae

muppy

“Muppy [..] enables the tracking of memory usage during runtime and the identification of objects which are leaking.
Additionally, tools are provided which allow to locate the source of not released objects.” It was developed in 2008 by
Robert Schuppenies.

muppy has become a part of Pympler.

Python Memory Validator

A commercial Python memory validator which uses the Python Reflection API.

URL: http://www.softwareverify.com/python/memory/index.html

PySizer

PySizer was a Google Summer of Code 2005 project by Nick Smallbone. It relies on the garbage collector to gather
information about existing objects. The developer can create a summary of the current set of objects and then analyze
the extracted data. It is possible to group objects by criteria like object type and apply filtering mechanisms to the
sets of objects. Using a patched CPython version it is also possible to find out where in the code a certain object was
created. Nick points out that “the interface is quite sparse, and some things are clunky”. The project is deprecated and
the last supported Python version is 2.4.

URL: http://pysizer.8325.org/

Support Tracking Low-Level Memory Usage in CPython

This is an experimental implementation of CPython-level memory tracking by Brett Cannon. Done in 2006, it tackles
the problem at the core, the CPython interpreter itself. To trace the memory usage he suggests to tag every memory
allocation and de-allocation. All actions involving memory take a const char * argument that specifies what the
memory is meant for. Thus every allocation and freeing of memory is explicitly registered. On the Python level the

7.1. Sitemap 59

http://guppy-pe.sourceforge.net
https://launchpad.net/meliae
http://www.softwareverify.com/python/memory/index.html
http://pysizer.8325.org/

Pympler Documentation, Release 0.9

total memory usage as well as “a dict with keys as the string names of the types being tracked and values of the amount
of memory being used by the type” are available.

URL: http://svn.python.org/projects/python/branches/bcannon-sandboxing/PEP.txt

7.1.13 Glossary

asizeof Name of a formerly separate package. Now integrated into Pympler.

HeapMonitor Name of a formerly separate package. Now integrated into Pympler.

muppy Name of a formerly separate package. Now integrated into Pympler.

pymple, to Obtain detailed insight in the size and the lifetime of Python objects.

pymple, a Undesirable or unexpected runtime behavior like memory bloat.

summary A summary contains information about objects in a summarized format. Instead of having data of every
object, information are grouped by object type. Each object type is represented by a row, whereas the first
column reflects the object type, the second column the number of objects of this type, and the third column the
size of all of these objects. The output looks like the following:

types # objects total size
<type ‘dict’> 2 560
<type ‘str’> 3 126
<type ‘int’> 4 96
<type ‘long’> 2 66
<type ‘list’> 1 40

7.1.14 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

0.9 - 2020-10-14

Added

• Python 3.9 support – By tirkarthi (#105)

• Compatibility with Django 3.x – By Lance Moore (#108)

Removed

• Python 3.4 support

Fixed

• Include size of data when sizing Numpy slices – Rported by sinorga (#111), fixed by Jean Brouwers

• Fix KeyError when sizing dicts in certain scenarios – Reported by MrSanZhi (#114), fixed by Jean Brouwers

60 Chapter 7. Table of Content

http://svn.python.org/projects/python/branches/bcannon-sandboxing/PEP.txt
http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html

Pympler Documentation, Release 0.9

0.8 - 2019-11-12

Added

• Python 3.8 support

• Compatibility with Django Debug Toolbar 2.x – Reported by John Carter (#96)

Removed

• Python 3.3 support

• Compatibility with Django Debug Toolbar 1.x

Fixed

• Include dicts which aren’t tracked by garbage collector in summary diff – Reported by Dave Johansen (#97)

• Fix formatting of Python 3 class names in summary diff – Reported by laundmo (#98)

0.7 - 2019-04-05

Added

• Added asizeof options above and cutoff to specify minimal size and the number of large objects to be
printed

• The Asizer class has a new property ranked returning the number of ranked objects.

• New Asizer method exclude_objs can be used to exclude objects from being sized, profiled and ranked.

Changed

• The asizeof option stats has been enhanced to include the list of the 100 largest objects, ranked by total
size.

Fixed

• Fix TypeError raised in certain scenarios – Reported by James Hirschorn (#72), fixed by Jean Brouwers

• Fix TypeError when creating snapshots with classtracker in certain scenarios – Reported by rtadewald (#79),
fixed by Jean Brouwers

0.6 - 2018-09-01

Added

• Python 3.7 support

7.1. Sitemap 61

Pympler Documentation, Release 0.9

Changed

• Update asizeof module to version 18.07.08. Includes more accurate sizing of objects with slots. – By Jean
Brouwers

Removed

• Python 2.6 and 3.2 support

Fixed

• Fix KeyError when using Django memory panel in certain scenarios – Reported by Mark Davidoff (#55), fixed
by Pedro Tacla Yamada

• Fix Debug Toolbar - Remove all jQuery variables from the global scope – By the5fire (#66)

• Fix process import error when empty lines found in /proc/self/status – Reported by dnlsng (#67)

• Return more accurate size of objects with slots – Reported by Ivo Anjo (#69), fixed by Jean Brouwers

0.5 - 2017-03-23

Added

• Add support for Python 3.5 and Python 3.6

Changed

• Improved runtime performance of summary differ – By Matt Perpick (#42)

• Include values when sizing named tuples – Reported by Paul Ellenbogen (#35), fixed by Chris Klaiber

• Update bottle.py to 0.12.13

Removed

• Drop Python 2.5 and Python 3.1 support

0.4.3 - 2016-03-31

Added

• Add Django 1.9 support for DDT panel – By Benjy (#30)

62 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

Fixed

• Handle untracked classes in tracker statistics – By gbtami (#33)

• Handle colons in process names gracefully – By Dariusz Suchojad (#26)

• Support types without __flags__ attribute in muppy (#24)

• Fix documentation errors (#32, #28, #25) – By gbtami, Matt, Lawrence Hudson

0.4.2 - 2015-07-26

Fixed

• Include private variables within slots when sizing recursively – GitHub issue #20 report and fix by ddodt

• Fix NameError in memory panel – GitHub issue #21 reported by relekang

0.4.1 - 2015-04-15

Changed

• Replace Highcharts with Flot (#17)

0.4 - 2015-02-03

Added

• Added memory panel for django-debug-toolbar

• Format tracker statistics without printing – GitHub issue #2 reported and implemented by Andrei Sosnin

• Added close method to ClassTracker

• Support for Python 3.4

Changed

• Track instance counts of tracked classes without snapshots

• Upgrade to Highcharts 3 and jQuery 1.10

Removed

• Dropped support for Python 2.4

Fixed

• Include size of closure variables – GitHub issue #8 reported and implemented by Craig Silverstein

• Fix tkinter import on Python 3 – GitHub issue #4 reported by pedru-de-huere

7.1. Sitemap 63

Pympler Documentation, Release 0.9

• Fix StreamBrowser.print_tree when called without arguments – GitHub issue #5 reported by pedru-
de-huere

• Fix sizing of named tuples – GitHub issue #10 reported by ceridwen

0.3.1 - 2013-02-16

• Fix class tracker graph data formatting – Issue 48 reported by Berwyn Hoyt

• Improve web class tracker documentation – Issue 49 reported by Berwyn Hoyt

• Update links to GitHub and PyPi

0.3.0 - 2012-12-29

• Support for Python 3.3

0.2.2 - 2012-11-24

• Work around array sizing bug in Python 2.6-3.2 – Issue 46 reported by Matt

• Fix import when python is run with optimization -OO – Issue 47 reported by Kunal Parmar

0.2.1 - 2011-11-13

• Fix static file retrieval when installed via easy_install

• Show class tracker instantiation traces and referent trees in web interface

• New style for web interface

0.2

The second release is one of several steps to better integrate the different sub-systems of Pympler. All modules now
directly reside in the pympler namespace which simplifies the import of Pympler modules. Pympler 0.2 introduces a
web interface to facilitate memory profiling. Pympler now fully supports Python 3.x. This release also adds several
modules replacing the Heapmonitor module with the new class tracker facility.

• Introduce web frontend

• Split Heapmonitor into several new modules

• New process module to obtain memory statistics of the Python process

• Improved garbage illustration which can directly render directed graphs using graphviz

0.1

This initial release is the first step to unify three separate Python memory profiling tools. We aim to create a place-
to-go for Python developers who want to monitor and analyze the memory usage of their applications. It is just the
first step towards a further integration. There is still lots of work that needs to be done and we stress that the API is
subject to change. Any feedback you want to give us, wishes, bug reports, or feature requests please send them to
pympler-dev@googlegroups.com.

64 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

7.1.15 Copyright

The Pympler software and sample code is licensed under the Apache License, Version 2.0. The asizeof module is
licensed under a different license (see asizeof license):

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"

(continues on next page)

7.1. Sitemap 65

Pympler Documentation, Release 0.9

(continued from previous page)

means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one

(continues on next page)

66 Chapter 7. Table of Content

Pympler Documentation, Release 0.9

(continued from previous page)

of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,

(continues on next page)

7.1. Sitemap 67

Pympler Documentation, Release 0.9

(continued from previous page)

or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

asizeof license

The asizeof module is licensed under the BSD license.

Copyright (c) 2002-2008 -- ProphICy Semiconductor, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

- Neither the name of ProphICy Semiconductor, Inc. nor the names
of its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

68 Chapter 7. Table of Content

Python Module Index

p
pympler.asizeof, 34
pympler.classtracker, 40
pympler.classtracker_stats, 42
pympler.garbagegraph, 44
pympler.muppy, 45
pympler.panels, 33
pympler.process, 46
pympler.refbrowser, 46
pympler.refgraph, 47
pympler.summary, 48
pympler.tracker, 49
pympler.web, 50

69

Pympler Documentation, Release 0.9

70 Python Module Index

Index

Symbols
_ProcessMemoryInfo (class in pympler.process), 46
__init__() (pympler.classtracker_stats.ConsoleStats

method), 43
__init__() (pympler.classtracker_stats.HtmlStats

method), 43
__init__() (pympler.classtracker_stats.Stats

method), 42
__init__() (pympler.garbagegraph.GarbageGraph

method), 44
__init__() (pympler.refgraph.ReferenceGraph

method), 47

A
adict() (in module pympler.asizeof), 38
Asized (class in pympler.asizeof), 36
asized() (in module pympler.asizeof), 38
asized() (pympler.asizeof.Asizer method), 36
asizeof, 60
asizeof() (in module pympler.asizeof), 38
asizeof() (pympler.asizeof.Asizer method), 36
Asizer (class in pympler.asizeof), 36
asizesof() (in module pympler.asizeof), 39
asizesof() (pympler.asizeof.Asizer method), 36

B
basicsize() (in module pympler.asizeof), 40

C
ClassTracker (class in pympler.classtracker), 41
clear() (pympler.classtracker.ClassTracker method),

41
ConsoleBrowser (class in pympler.refbrowser), 47
ConsoleStats (class in pympler.classtracker_stats),

43
create_html() (pym-

pler.classtracker_stats.HtmlStats method),
43

create_snapshot() (pym-
pler.classtracker.ClassTracker method), 41

D
detach_all() (pympler.classtracker.ClassTracker

method), 41
detach_all_classes() (pym-

pler.classtracker.ClassTracker method), 41
detach_class() (pympler.classtracker.ClassTracker

method), 41
diff() (pympler.tracker.SummaryTracker method), 49
dump_stats() (pympler.classtracker_stats.Stats

method), 42

E
end_debug_garbage() (in module pym-

pler.garbagegraph), 45
exclude_refs() (pympler.asizeof.Asizer method), 36
exclude_types() (pympler.asizeof.Asizer method),

36

F
FileBrowser (class in pympler.refbrowser), 47
filter() (in module pympler.muppy), 45
flatsize() (in module pympler.asizeof), 40

G
GarbageGraph (class in pympler.garbagegraph), 44
get_diff() (in module pympler.muppy), 45
get_diff() (in module pympler.summary), 49
get_diff() (pympler.tracker.ObjectTracker method),

50
get_objects() (in module pympler.muppy), 45
get_referents() (in module pympler.muppy), 45
get_size() (in module pympler.muppy), 45
get_tree() (pympler.refbrowser.RefBrowser method),

47

H
HeapMonitor, 60

71

Pympler Documentation, Release 0.9

HtmlStats (class in pympler.classtracker_stats), 43

I
InteractiveBrowser (class in pympler.refbrowser),

47
is_available() (in module pympler.process), 46
itemsize() (in module pympler.asizeof), 40

L
leng() (in module pympler.asizeof), 40
load_stats() (pympler.classtracker_stats.Stats

method), 42

M
main() (pympler.refbrowser.InteractiveBrowser

method), 47
muppy, 60

O
ObjectTracker (class in pympler.tracker), 50

P
print_() (in module pympler.summary), 49
print_diff() (pympler.tracker.ObjectTracker

method), 50
print_diff() (pympler.tracker.SummaryTracker

method), 50
print_profiles() (pympler.asizeof.Asizer method),

36
print_stats() (pympler.asizeof.Asizer method), 36
print_stats() (pym-

pler.classtracker_stats.ConsoleStats method),
43

print_stats() (pym-
pler.garbagegraph.GarbageGraph method),
45

print_summary() (pympler.asizeof.Asizer method),
37

print_summary() (pym-
pler.classtracker_stats.ConsoleStats method),
43

print_tree() (pympler.refbrowser.ConsoleBrowser
method), 47

print_tree() (pympler.refbrowser.FileBrowser
method), 47

print_typedefs() (pympler.asizeof.Asizer method),
37

pymple, a, 60
pymple, to, 60
pympler.asizeof (module), 34
pympler.classtracker (module), 24, 40
pympler.classtracker_stats (module), 42
pympler.garbagegraph (module), 44

pympler.muppy (module), 45
pympler.panels (module), 33
pympler.process (module), 46
pympler.refbrowser (module), 46
pympler.refgraph (module), 47
pympler.summary (module), 48
pympler.tracker (module), 49
pympler.web (module), 50

R
RefBrowser (class in pympler.refbrowser), 46
ReferenceGraph (class in pympler.refgraph), 47
refs() (in module pympler.asizeof), 40
render() (pympler.garbagegraph.GarbageGraph

method), 44
render() (pympler.refgraph.ReferenceGraph method),

47
reset() (pympler.asizeof.Asizer method), 37
reverse_order() (pympler.classtracker_stats.Stats

method), 42

S
set() (pympler.asizeof.Asizer method), 37
sort() (in module pympler.muppy), 45
sort_stats() (pympler.classtracker_stats.Stats

method), 42
split() (pympler.garbagegraph.GarbageGraph

method), 44
split() (pympler.refgraph.ReferenceGraph method),

48
start_debug_garbage() (in module pym-

pler.garbagegraph), 45
start_in_background() (in module pympler.web),

51
start_periodic_snapshots() (pym-

pler.classtracker.ClassTracker method), 41
start_profiler() (in module pympler.web), 50
Stats (class in pympler.classtracker_stats), 42
stop_periodic_snapshots() (pym-

pler.classtracker.ClassTracker method), 41
store_summary() (pympler.tracker.SummaryTracker

method), 50
summarize() (in module pympler.summary), 49
summary, 60
SummaryTracker (class in pympler.tracker), 49

T
track_class() (pympler.classtracker.ClassTracker

method), 41
track_object() (pympler.classtracker.ClassTracker

method), 41

72 Index

Pympler Documentation, Release 0.9

U
update() (pympler.process._ProcessMemoryInfo

method), 46

W
write_graph() (pym-

pler.garbagegraph.GarbageGraph method),
44

write_graph() (pympler.refgraph.ReferenceGraph
method), 48

Index 73

	Requirements
	Download
	Target Audience
	Usage Examples
	History
	Quick Links
	Table of Content
	Python Module Index
	Index

